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Phase space approach to real-time quantum evolution: towards 
non-equilibrium lattice field theory 

J Kripfganz 
Sektion Physik, Kark-Marx-Universitat, Leipzig, German Democratic Republic 

Received 8 July 1986 

Abstract. A strategy of studying non-equilibrium phenomena in lattice field theory is 
discussed in the framework of Wigner’s phase space approach. For a test model, an 
ensemble of anharmonic oscillators at weak coupling, an analytic non-perturbative solution 
is found. In this case a quasiclassical approach is shown to be valid for a wide range of 
parameters. 

1. Introduction 

Recently there has been considerable progress in the numerical investigation of non- 
perturbative equilibrium properties of quantum field theories. In lattice approxima- 
tions, vacuum or thermal expectation values can be computed quite efficiently by 
standard techniques such as the Metropolis algorithm (Metropolis et a1 1953) because 
this problem reduces, with few exceptions, to the evaluation of Euclidean time path 
integrals of positive measure. Non-equilibrium problems, however, obviously require 
a real-time approach and cannot be reduced in a similar way to functional integrals 
of positive measure. No progress comparable to the equilibrium case has therefore 
been made. 

Attempts towards the non-perturbative treatment of non-equilibrium phenomena 
include the complex Langevin approach. The Langevin simulation is the only method 
used for equilibrium problems having a chance of being applicable to real-time 
situations as well. Langevin equations with complex drift terms have been studied by 
various groups (see, e.g., Klauder and Petersen 1985) and are found to converge 
towards the corresponding complex measure in some but not all cases. Studies of 
real-time quantum mechanics (Callaway et a1 1985, Ilgenfritz and Kripfganz 1986) are 
encouraging but far from allowing realistic investigations of multi-dimensional 
problems. 

In the present paper we follow a different route. An interesting class of real-time 
problems is expected to show almost classical behaviour. This should be the case 
whenever the energy density is large compared to the vacuum energy. A particular 
problem which has motivated the present analysis has been a classical approach to 
reheating processes in the early universe (Kripfganz and Ilgenfritz 1985). Classical 
motion in lattice field theory can be studied by standard techniques and the expected 
approach to thermal equilibrium, dissipation and reheating has been found. Of course, 
this approach is justified only if quantum corrections can be estimated and shown to 
be small. 
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Whenever one expects quasiclassical behaviour Wigner’s phase space formulation 
of quantum mechanics (Wigner 1932) should provide a useful and adequate framework, 
in particular for numerical studies. Recently, this approach has become very popular 
again but, to our knowledge, has not been applied to the study of non-equilibrium 
phenomena in lattice field theory. The strategy is in fact quite straightforward and 
will be briefly reviewed in 9 2. We work in the Heisenberg picture. In this case the 
main problem consists of solving the Heisenberg equation for the Wigner equivalents 
of the operators whose expectation values are candidates for study. The ensemble 
average can then be performed by standard Monte Carlo techniques, allowing the 
numerical evaluation of time-dependent expectation values from first principles. In 
the quasiclassical expansion the solution of the Heisenberg-Wigner equation is recur- 
sively expressed in terms of solutions of the classical equations of motion. The approach 
is non-perturbative as far as the coupling constants of the theory are concerned. 

Already the first quantum corrections to the classical motion do not have a very 
simple structure and show oscillations increasing with time. Performing the ensemble 
average might therefore not be totally trivial in practice even when the measure is 
positive. For this and other reasons it might be desirable to have a simple solvable 
but non-trivial test model, before embarking on more complicated problems. Such a 
test model is presented and solved in § 3. The model consists of an ensemble of 
independent anharmonic oscillators with a weak A q 4  term, but with time t allowed to 
become of order 1/A. An analytic solution to the Heisenberg-Wigner equation is found 
which is correct up to terms of order A but with terms of order A t  summed to all 
orders. The approach is therefore non-perturbative in A t  and h. Results are discussed 
in § 4. The analysis of the test model shows explicitly that for a large range of energy 
densities quantum effects are irrelevant for the approach to equilibrium. The method 
will allow to estimate quantum corrections efficiently also for more complicated systems, 
thereby determining the range of validity of the classical regime. 

Similar problems are also under study using the finite element approach to the 
operator Heisenberg equation (Bender et a1 1985). Our approach is more limited in 
scope but also more tractable, and should be superior in all cases where quasiclassical 
behaviour is anticipated. 

2. General strategy: quasiclassical approach 

The basic problem to be studied is simply to find an efficient algorithm for computing 
non-perturbatively expectation values 

in lattice field theory. Only bosonic theories will be considered here. A ( t )  is one of 
the Heisenberg operators 

A ( t )  =exp (3 A(0)  exp (-3 
chosen to characterise the time evolution of the system. p is the density operator. 

In terms of Wigner’s distribution functions, (1) is 

(3) 
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with the Wigner equivalent of the operator A given by 

and similarly for p w .  In the following, we use a single mode notation but the generalisa- 
tion to many degrees of freedom is straightforward. 

Equation (3) expresses the ensemble average of A( t )  as phase space integral as in 
statistical mechanics. In quantum mechanics, however, pw( q, p )  need not be positive 
everywhere, and therefore does not have a strict probability interpretation. Aw(q, p ,  t )  
is obtained as a solution of the Wigner equivalent of the Heisenberg equation 

aA i 
a t  h - [ Y A I  

which becomes 

where 

is the Poisson bracket operator. These and other useful results are summarised, for 
example, by Imre et a1 (1967). In the field theory limit (3)  becomes a functional 
integral. In the lattice approximation it can be evaluated by standard Monte Carlo 
techniques provided one finds efficient algorithms for solving (6). 

A formal solution to (6) is of course 

but it is not very useful for practical purposes. Apart from special cases, where more 
explicit analytical solutions can be found a quasiclassical approach, i.e. an expansion 
in h2,  suggests itself. The first terms of this expansion have the structure 

(9) 

where 

In this way the quantum solution Aw(q, p ,  t )  is expressed in terms of classical solutions. 
However, the numerical effort in calculating the O( h 2 )  or even higher contributions 
will be considerable due to the need of evaluating derivatives with respect to the initial 
conditions. A promising method for approaching this problem is a finite element 
approximation for the time evolution, calculating the required derivatives recursively 
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from time slice to time slice. Results along these lines will be presented elsewhere. In 
the following we shall study an instructive example where the quasiclassical expansion 
can be explicitly summed, through finding the solution to the corresponding partial 
differential equation ( 6 )  analytically. 

3. A solvable model 

We consider an ensemble of independent anharmonic oscillators with Hamiltonian 

H w ( q , p )  =ip2+fm2q2+&.j4.  (12) 

In this case, the Heisenberg-Wigner equation ( 6 )  is explicitly 

Equivalently, it may be written as an integro-differential equation 

a a 
aq aP 

H; =p-- ( m 2 q +  A q 3 )  -. 

The operator exp( tH;) generates the classical motion 

e x p ( W f ( q ,  P)  = f ( q d q ,  P, t ) ,  Pcdq, P, t ) ) .  (16) 
Equation (14) may be solved under the following conditions. A is assumed to be small, 
with all terms O(A) dropped but terms of order A t  kept. Those terms have to be summed 
to all orders leading to a solution non-perturbative in At. 

First we need the classical solution in this approximation. This is of course a trivial 
problem leading to 

1 
q c l ( t )  =-[b'exp(iwt)+b exp(-iot)]+O(A) a 

1/2 

pCd t )  = i (:) [ b' exp(iot) - b exp( -iwt)]  + O( A )  

with 

w = m + w ' E  

E = mb'b+O(A) 

w'  = $ A /  m3 

and 

1 
b = - ( m q  + ip) a 

b and b' (corresponding to annihilation and creation operators in the quantum case) 
have been introduced here for convenience, because of their simple time translation 
properties 

exp( tH:) b = exp( - i d )  b exp(tH:)b'= exp(iwt)b'. (20) 
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The approximation (17) is appropriate as long as A 2 t  is small, or more precisely 

which puts an upper limit on t, i.e. the approximation does not allow us to study the 
limit t + 00, A fixed. Returning to the quantum problem we now have to make a choice 
which operator A we wish to consider. The simplest choice would be q ( t )  but the 
ensemble average (q( t)) vanishes identically for symmetric initial distributions. We 
therefore choose A( t )  = q2( t) .  

The general structure of the Wigner equivalent of q2(t)  may be easily discovered 
from the iterative solution to (14). It is 

wt2E2tcc  m (21) 

1 1 
(q’ ) ,=-  m b+b+-Re[b+2g(i ,  m i )  exp(2iwt)]+O(A) (22) 

with 

= E l m  i= 2iw’mt. (23) 
Equation (22) results because the factor A in the kernel of (14) must be compensated 
by a factor t arising from the t’ integral. This can only happen if oscillating factors 
of the integrand cancel which just occurs for the structure (22) 

(24) 
From (14), g ( i ,  

exp[(t- t ’ )H~]b+’g (~ ,  f )  exp(2iwt’) = b+’g(i, 7) exp(2iwt). 
is found to satisfy the equation 

with initial condition g ( i ,  0) = 1 independent of E. In this way the problem has been 
reduced from a third-order partial differential equation of three variables to one of 
second order and two variables. 

Perhaps surprisingly, (25) is solved exactly by the ansatz 

i )  = P( t3 exp(icp( i ) )  (26) 

d o )  = 0 (27) 

leading to the ordinary differential equations 
d - cp = -Qh2[- 
d i  

d h2 
d i p = - -  

- 2 icp - c p z ~  

and 

[61+6cpIP p(0) = 1. (28) 
- 

They can also be solved by the obvious substitution y = 4 - ?. The result is 
J8 h i  
h J 8  y(i)=-tan--i  

p ( 9  = exp (6 log cos$). 

The final result for ( q 2 ) w  is now easily obtained: 

E 

2hw’mt 
m 

1 
m 

(q’) ,  = - b+b 
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4. Discussion 

In the same way explicit solutions for other operators can be obtained as well. With 
the solution for A,( q, p, 1 )  available one can now study ensemble averages, according 
to (3) .  We shall discuss a simple example for the t = O  density operator, namely the 
Gibbs ensemble of harmonic oscillators at inverse temperature p and frequency 61. 
The corresponding Wigner function is given by 

(32)  - 1  2 1 - 2  2 PW(4,P) = X-’ exP[-P(IP + P l  4 )I 
with 

- 2  hmp p =-tanh- 
h f i  2 

and 

(33) 

At t = 0 the Hamiltonian (12) is switched on. In general, the determination of the 
initial Wigner distribution is by itself a non-trivial problem. In the case of (32)  the 
ensemble average can be trivially performed leading, for example, to 

2hw‘mt 
(q2(t ) )  6 log cosh ~ 

with 

r = m 2 / f i 2 .  (36)  

The solution (35) is non-perturbative in h as well as At ,  with a simple singularity 
structure determined by the two branch cuts. The non-perturbative regime starts with 

Js 2hw‘mt 
S 1 or l/r respectively hpm tan - Js (37)  

and shows damped oscillations caused by the non-linear A q 4  contribution. The essential 
feature is that at sufficiently large energy density (i.e. /?<< 1) the non-perturbative 
behaviour of the classical contribution sets in already for w ’ t  small ( w ’ t  - p). In this 
time range quantum corrections are still small, as is obvious from (35) ,  and can be 
treated perturbatively. This is precisely the situation where the quasiclassical approach 
outlined in 9 2 becomes appropriate. 

A numerical example is shown in figure 1 ,  with parameters m = 1 ,  r = 0.5, /? = 0.25, 
w ’  = 0.05. Quantum effects are impressively unimportant in the transient region. A 
similar observation has already been made at strong coupling (Ilgenfritz and Kripfganz 
1985) but in this case only a very short time interval could have been studied. 

The very large time behaviour may in fact be very different for the classical and 
quantum systems, respectively, with quasi-periodicity expected in the quantum case. 
This cannot be studied here because condition (21) restricts the allowed time range. 
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Figure 1. Evolution of the ensemble average of q 2 (  1 )  for a set of parameters described in 
the text. The quantum solution is given by the full curve and the classical one by the 
broken curve. 

In many cases this would be of no practical importance as long as the time dependence 
becomes already sufficiently weak in the quasiclassical region. 

For more complicated systems the solution of the Heisenberg-Wigner equation 
will have to be generated numerically, and also the ensemble average has to be done 
by Monte Carlo methods. One might question whether in such cases the numerical 
accuracy could be achieved to see small differences between quantum and classical 
behaviour like the one in figure 1. This is not such a severe problem, however, because 
the correction term is calculated separately. For the example of figure 1 we have 
checked that a sample of about 1000 trajectories is sufficient to reproduce the correction 
term in good quality. 

The method is not expected to work very well near the ground state and in particular 
if tunnelling phenomena are relevant. Still, there remains a large class of interesting 
problems, where considerable progress could be expected. One such problem is 
quantum chaos, in particular the role of quantum contributions near the stochastic 
transition of simple non-integrable systems. Dissipative phenomena in scalar (1 + 
1 )-dimensional lattice field theory are currently under study. 

We should also emphasise that the approach outlined in this paper should be very 
useful not only for non-equilibrium problems but as well for non-perturbative studies 
of multi-time correlation functions in equilibrium. 
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